

Test Report

CITIZEN SOLAR PRIVATE LIMITED

REPORT NUMBER: 4791205189-OTHER-S1

PROJECT NUMBER: 4791205189

<u>Select the applicable t</u>	test
• •	
locations:	

□LOCATION 1:

UL India Private Limited, Laboratory building, Kalyani Platina Campus, Sy.no.129/4, EPIP Zone, Phase II, Whitefield, Bangalore – 560 066

\square LOCATION 2:

P:91-80-41384400

UL India Private Limited,
Oak building, Kalyani Platina
Campus, Sy.No.129/4,
EPIP Zone, Phase II, Whitefield,
Bangalore, Karnataka – 560 066

\square LOCATION 3:

UL India Private Limited, 30/A, I Stage, Vishveshwarya Industrial Estate, Doddanekkundi Industrial Area, Bangalore - 560048

\boxtimes Other:

(#Refer Page no. for Test lab location)

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1 Page **1** of **25**

TEST DISCIPLINE: ELECTRONICS PRODUCT GROUP: SOLAR PANEL

General details

	I au					
	Citizen Solar Private Limited					
Customer / Applicant	Mehsana, Gujarat-382715					
	Citizen Solar Private Limited					
Manufacturer	New Survey No.966, Villag	e: Indrad, Chhatral K	adi Road, Ta.Kadi, Dist.			
	Mehsana, Gujarat-382715					
Program	OTHER					
Item Under Test	Mono-crystalline Photovolta	aic module				
Model	Representative sample of Model: CSPL-144MHC-TF-545					
Number of Samples	03					
UL. Sample Identification	Refer Page no.6 Refer Summary of Test results for multiple samples					
Manufacturer Serial Number (if any)	Refer Page no.6					
Condition of IUT on receipt	Good					
Date of Receipt	25 □pril 2024					
Applicable Standard	IEC 62716 Edition 1.0, 2013-06- Photovoltaic □PV□ modules □mmonia corrosion testing.					
Date of Testing (Start date)	18 □une 2024	End Date	16 □uly 2024			
UL general ambient	Temperature in □C		□23 □5C□			
condition	Relati□ehumidity in □		□70 □			
Date of Issue	26 □uly 2024					
Test In⊡charge	Fu□iang tiao					

M. □ayda□shmi	N. Srimathy
Engineering Project □ssociate	Senior Project Engineer
Re□ie□ed by	Authori□edsignatory

Disclaimer

The issuance of this report in no way implies Listing, Classification or Recognition by \Box L and does not authorize the use of \Box L Listing, Classification or Recognition Mar \Box s or any other reference to \Box L on the product or system. \Box L authorizes the above-named company to reproduce this Report provided it is reproduced in its entirety. \Box L \Box s nae or mar \Box s cannot beused in any pac \Box agirg, advertising, promotion or mar \Box eting relating to the data in this Report, without \Box L \Box prior written permission. The results of testing in this report apply only to the sample product \Box tiem, which wastested. \Box L Lab has not participated in the sample. Other similar sample will not necessarily produce the same results due to production tolerance and measurement uncertainties. The laboratory is not responsible when the information is supplied by the customer and can affect the validity of results. The applicable standard ambient condition supersedes the lab general ambient conditions and are recorded in datasheets available in the lab. Decision rule for statement \Box CGuide 115:2023, Clause 4.3.3 Simple \Box Cceptance. Measurement uncertainty is not applied when providing statements of conformity in accordance with IEC Guide 115: 2023, Clause 4.3.3.

Registered Office, Kalyanii Flatina - block i, sid Floor

No. 24, EPIP Zone, Phase II, Whitefield, Bangalore - 560066, India

T: 91.80.4138.4400 / F: 91.80.2841.3759 / W: ul.com

CIN: U74200KA1997PTC023189

Page 2 of 25

General Remarks (If any)

#Test lab location (Other than UL India Private Limited)

Test Laboratory/Location	
[X] UL or Affiliate	[X] Subcontract Lab
Company Name	China Telecommunication Technology Labs
Location	CuiHu Cloud Center,No. 1 Gaolizhang Road,Wenquan Town, Haidian District, Beijing

Test witnessed by: Jason You (Senior Project Engineer, UL China)

Description of Item under Test (IUT)

Mono Crystalline modules. A total of 2 samples were tested. 1 sample was a control sample.

Series model covered under this report:

Below listed models covered in this test report, on basis of having same construction, design and BOM as declared by manufacturer. No testing was considered necessary to cover the listed models below. The only changes are the electrical ratings, number of cells and overall dimension from the tested model.

	Models Covered Under this report:
	With Transparent Backsheet:
	144 Half Cut Cell Series (182mm)
	CSPL-144MHC-TF-560, CSPL-144MHC-TF-555, CSPL-144MHC-TF-550,
	CSPL-144MHC-TF-545, CSPL-144MHC-TF-540, CSPL-144MHC-TF-535,
	CSPL-144MHC-TF-530, CSPL-144MHC-TF-525, CSPL-144MHC-TF-520
	132 Half Cut Cell Series(182mm)
Models covered	CSPL-132MHC-TF-495, CSPL-132MHC-TF-490, CSPL-132MHC-TF-485,
	CSPL-132MHC-TF-480
	120 Half Cut Cell Series(182mm)
	CSPL-120MHC-TF-450, CSPL-120MHC-TF-445, CSPL-120MHC-TF-440,
	CSPL-120MHC-TF-435
	108 Half Cut Cell Series (182mm)
	CSPL-108MHC-TF-405, CSPL-108MHC-TF-400, CSPL-108MHC-TF-395,
	CSPL-108MHC-TF-390

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

Summary of Test Results

After the ammonia exposure test there is no evidence of major visual defects as described in IEC 61730-2:2004 Also including no mechanical deterioration or corrosion of module components.

After the ammonia exposure test the maximum power was not decreased by more than 5 % of the initial value. All the test results fulfil the requirements of standard: IEC 62716 edition 1.0, dated 2013-06. Photovoltaic (PV) modules – Ammonia corrosion testing.

Test No.	Test Item	Standard references, clause	Result
1	Preconditioning	IEC 61215 second edition, dated 2005-04.	Р
2	Visual inspection	IEC 61215 second edition, dated 2005-04, clause10.1.	Р
3	Maximum power determination	IEC 61215:2005-04, Ed-2, 10.2	Р
4	Dielectrics withstand test	IEC 61215 second edition, dated 2005-04, clause 10.3	Р
5	Wet leakage current test	IEC 61215 second edition, dated 2005-04, clause 10.15.	Р
6	Ground continuity test	IEC61730-2 first edition, dated 2004-10, clause 10.4.	Р
7	Ammonia corrosion test	IEC 62716 edition 1.0, dated 2013-06, clause 7.	Р
8	Visual inspection after Ammonia corrosion test	IEC 61215 second edition, dated 2005-04, clause10.1.	Р
9	Maximum power determination after Ammonia corrosion test	IEC 61215:2005-04, Ed-2, 10.2	Р
10	Dielectrics withstand test after Ammonia corrosion test	IEC 61215 second edition, dated 2005-04, clause 10.3	Р
11	Wet leakage current test after Ammonia corrosion test	IEC 61215 second edition, dated 2005-04, clause 10.15.	Р
12	Ground continuity test after Ammonia corrosion test	IEC61730-2 first edition, dated 2004-10, clause 10.4.	Р
13	Bypass diode functionality test after Ammonia corrosion test	IEC 61701 edition 2.0, dated 2011-12, clause 4.2	Р

P: Meets the requirements F: Does not meet the requirement NA: Not applicable

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

Abbreviations used in this report:

Pmax - Maximum power

Vmp - Maximum power voltage
Imp - Maximum power current
Isc - Short circuit current
Voc - Open circuit voltage

FF - Fill factor

N/A – not apply to the object

Master Equipment and Calibration details

Inst. ID No.	Instrument Type	Test Number, Test Title or Conditioning	Range used	Last Cal. Date [YYYY- MM-DD]	Next Cal. Date [YYYY-MM- DD]
CTTL-09517	Solar simulator	3/9/13	1000W/m2	2024-02-18	2025-02-17
CTTL-09579	Light Meter	2/8	200□20000 lx	2024-03-12	2025-03-11
CTTL-090□5	Steel tape	2/8	0□2500mm	2024-02-27	2025-02-2□
CTTL-10325	Reference PV module	3/9/13	1	2023-08-14	2024-08-13
CTTL-02□00	Pyranometer	1	1000W/m2	2023-12-20	2024-12-19
CTTL-09093	Outdoor test system	1	1000W/m2	2023-10-09	2024-10-08
CTTL-07599	Dielectrometer	4/5/10/11	0□□□V□ 1000V	2023-10-09	2024-10-08
CTTL-07□00	Withstand voltage tester	4/10	0□15□V□ 10mV	2023-10-09	2024-10-08
CTTL-02□98	Conductivity meter	5/11	0□9999Ωcm	2023-09-08	2024-09-07
YD0004185	Power supply	□/12	100A/100V	2023-10-09	2024-10-08
CTTL-09003	Multimeter	□/12	500mV	2024-01-1	2025-01-15
CTTL-02□11	DC Clamp Meters	□/12	100A	2023-07-20	2024-07-19

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

CTTL-09157	Ammonia corrosion chamber	7	26~60℃; 70~98%	2024-02-29	2025-02-28
CTTL-09349	Panel Gas Flowmeter	7	0~10L/min	2023-07-13	2024-07-12
CTTL-02728	Stopwatch	7	0~1800s	2023-07-10	2024-07-09
CTTL-02728	Stopwatch	7	0~1800s	2024-07-08	2025-07-07
CTTL-09578	□n□rare□ thermometer	3/9/13	-10~135℃	2024-03-14	2025-03-13
CTTL-08577	Temperature an□ humi□it□ meter	1~13	0~30℃; 0~80%	2023-09-13	2024-09-12

Remar□: □urin□ testin□ an□ measumeents no e□uipment out o calibration

□ Test sample description									
ampling rocedure All the sample were selecte an prodice b client LLC donot select the sample size termine whether the sample size representation of the test sample size were we prodice with incomation relation to the cormulation of identication component materials used in the test sample size.									
□anu□acturer: 0ti□enSolar Pri□ate Limite□									
Electrical Ratin ☐s:									
oule oel	□ oc	□sc	Pma□ □□□/Toler	□mp	□mp □A	□a□□ . s□stem	□a□□O□er -Current Protection	□imension	

13**□2**

41□9

□dta□e □□

1500

 \Box C \Box

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

13□9

ance

545

 $\Box C \Box$

49□16

CSPL-144□HC-

TF-545

UL India Private Limited Registered Office: Kalyani Platina - Block I, 3rd Floor No. 24, EPIP Zone, Phase II, Whitefield, Bangalore - 560066, India T: 91.80.4138.4400 / F: 91.80.2841.3759 / W: ul.com CIN: U74200KA1997PTC023189

 \square mm \square

2278 🗆 1133

Ratin□ □A

25A

 $\Box C \Box$

1.3. Sample identification:

Sample card No.	Date Received [YYYY-MM-DD]	Sample No.	Product Identification	Type/Model
7153890	2024-05-29	1	Solar PV Module 585W	CSPL-144MHC-TF-
Control		'	SI No: CSPL24040033	545
7452004	2024-05-29	2	Solar PV Module 585W	CSPL-144MHC-TF-
7153891		2	SI No: CSPL24040034	545
7153892	2024-05-29	3	Solar PV Module 585W	CSPL-144MHC-TF-
		3	SI No: CSPL24040035	545

See the others sample information in appendix 1 and 2.

2. Testing

Test program:

Overview of test items for test sample: The table below is provided to establish correlation of sample numbers to test numbers.

Test No.		Samples No.	
	1	2	3
Control			
1 🗆 🗆 8 🗆 12			
7			
13			

2.1. Preconditioning

Test procedure: Reference to □EC □1215 second edition □ dated 26004.

Humidit□ □□R⊞	NⅢ	□mbient □□C□	N□□		
Tested b□	Fu□iang□äo	Test □ate □□□□□-MM-□□□	2024-0□-18		
Table 1: Preconditioning					
Sample No.		1□3			
Load	Open circuit				
Test □ate	□verage irradiance during exposed time□W□m□□	Exposed time □h□	□rradiation integation □□Wh□m□□		
2024-0□-18	855 5.8 5				
Supplementar information: N □ □					

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

2.2 Visual inspection

Test procedure: reference to IEC 61215 second edition, dated 2005-04, clause10.1.

Humidity [%RH]	45.8	Ambient [°C]	25.1
Tested by	Fuqiang Jiao	Test Date [YYYY-MM-DD]	2024-06-19

Sample No. I	Nature and position of initial findings – comments or attach photos	Critical [Yes or No]
1 (control)	No major finding N	o
2	No major finding N	0
3	No major finding N	0

Results: The samples-did not show any critical visual defect.

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

2.2. Maximum power determination

Test procedure: reference to IEC 61215 second edition, dated 2005-04, clause 10.2.

Humidity [%RH]	46.1	Ambient [°C]	25.1
Tested by	Fuqiang Jiao	Test Date [YYYY-MM-DD]	2024-06-19

Table 3: Maxir	num power d	etermination	n [Initial]					
Light source			[X]	Simulator	[]	Natural sur	nlight	
Sample No.	Voc [V]	Isc [A]	Pmax [W]	Vmp [V]	Imp [A]	FF [%]	Tmod [°C]	Irradiance [W/m²]
1-F(control)	50.176	13.252	533.589	42.674	12.504	80.25	25.0	1000.03
1-R(control)	49.601	9.961	388.832	42.839	9.077	78.70	25.1	1000.02
3-□(control)	50.303	14.518	583.686	42.792	13.640	79.93	25.1	1000.03
2-F	50.062	13.269	535.712	42.600	12.575	80.65	25.1	1000.03
2-R	49.505	9.897	387.370	42.759	9.059	79.06	25.0	1000.01
2-□	50.243	14.547	587.366	42.742	13.742	80.36	24.9	1000.02
3-F	50.121	13.254	534.385	42.630	12.535	80.45	25.1	1000.03
3-R	49.585	10.019	389.830	42.827	9.103	78.47	25.1	1000.02
3-□	50.291	14.511	585.550	42.780	13.687	80.24	24.9	1000.03
Supplementar	y information	: N/A					1	

Results: The IV cur □ e did not showany □ in □ or other unusual characteristic.

Difference [%] compared to nameplate stated □alue					
Sample No.	Voc	Isc	Pmax	Vmp	lmp
1-F (control)	0.84	-4.66	-2.09	1.85	-3.96
2-F	0.61	-4.54	-1.70	1.67	-3.42

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

UL India Private Limited

Registered Office: Kalyani Platina - Block I, 3rd Floor

No. 24, EPIP Zone, Phase II, Whitefield, Bangalore - 560066, India

T: 91.80.4138.4400 / F: 91.80.2841.3759 / W: ul.com

CIN: U74200KA1997PTC023189

Difference [%] compared to nameplate stated value					
Sample No. V	oc l	sc P	max	Vmp	Imp
3-F	0.73 -	4.65 -	1.95 1	.74	-3.73

3. Dielectrics withstand test

Test procedure: reference to IEC 61215 second edition, dated 2005-04, clause 10.3.

Humidity [%RH]	54.6	Ambient [°C]	25.8
Tested by	Fuqiang Jiao	Test Date [YYYY-MM-DD]	2024-06-20

Table 4: Dielectr	ic withstand test [Initia	al]				
Test voltage applied [V DC]		1500 Test voltage applied [V		[V DC]	8000	
Sample No.	Dielectric	Module area [m²] $ \begin{array}{c} \text{Required} \\ \text{resistance [MΩ]} \end{array} $		Dielectric breakdown Yes [description] N		wn
·	breakdown					0
1 (control)	>10000			No diel	ectric breakd	own
2	>10000	2.58 1 5.50 No (No dielectric breakdown	
3	>10000			No diel	ectric breakd	own
Supplementary information: The maximum calibrated resistance measurement range is $10000M\Omega$.						

Results: For modules with an area greater than 0.1 m²:

There was no indication of dielectric breakdown during the test.

There was no indication of surface tracking during the test.

The measured insulation resistance was/was not less than 15.50 megohms.

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

3.1. Wet leakage current test

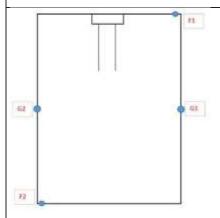
Test procedure: reference to IEC 61215 second edition, dated 2005-04, clause 10.15.

Humidity [%RH]	54.6	Ambient [°C]	25.8
Tested by	Fuqiang Jiao	Test Date [YYYY-MM-DD]	2024-06-20

Table 5: Wet leakage current test [Initial]					
Solution temperature [°	Solution temperature [°C]		Solution resistivity [Ω cm]	2192	
Test Voltage applied [V, dc] 1500					
Sample No.	Measured resistance [MΩ] N		l odule area [m²]	Required resistance [MΩ]	
1 (control)	1740		0.50.4	5.50	
2	2310		2.58 1	5.50	
3 1890					
Supplementary information: N/A					

Results: For modules with an area greater than 0.1 m², the measured insulation resistance was not less than 15.50 megohms.

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1


3.2. Ground continuity test

Test procedure: Reference to IEC61730-2 first edition, dated 2004-10, clause 10.4.

Humidity [%RH]	54.6	Ambient [°C]	25.8
Tested by	Fuqiang Jiao T	est Date [YYYY-MM-DD]	2024-06-20

Table 6: Ground continuity test	
Maximum over-current protection rating [A]	25
Current applied [A DC]	62.5

Location of designated grounding point and accessible point on conductive components of the PV module

G1, G2: Designated point for equipotential bonding

F1, F2: Conductive point of the PV module

Sample No.	Test point	Voltage dropped [V DC]	Resistance [Ω]
1	G1 to G2 0	.374 0	.0060
2	G1 to G2 0	.336 0	.0054
3	G1 to G2 0	.389 0	.0062

Supplementary information: The resistance were calculated from the applied current and the resulting voltage drop measured at the connection points of the PV module [e.g. frame].

Results: The resistance between the selected exposed conductive component and other conductive components of the PV module was-less than 0.1Ω .

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

UL India Private Limited

Registered Office: Kalyani Platina - Block I, 3rd Floor

No. 24, EPIP Zone, Phase II, Whitefield, Bangalore - 560066, India

T: 91.80.4138.4400 / F: 91.80.2841.3759 / W: ul.com

CIN: U74200KA1997PTC023189

3.3. Ammonia corrosion test

Test procedure: Reference to IEC 62716 edition 1.0, dated 2013-06, clause 7.

Humidity [%RH]	22.5~48.2	Ambient [°C]	26.1~36.8
Tested by	Fuqiang Jiao T	est Date [YYYY-MM-DD]	2024-06-21-2024-07-11

Table 7:	Ammonia	corrosion test		
Sample	No.		2, 3	
		Hours [h]	8 (including heating up)	
	1 test section Cycles 2 test	NH₃-concentration [ppm]	6667	
		Temperature [°C]	60±2	
Cycles		Relative humidity [%RH]	98±2	
Cycles		Hours [h]	16 (including cooling)	
		NH ₃ -concentration	0	
	section	Temperature [°C]	26±2	
		Relative humidity [%RH]	70±2	
Duration	<u> </u> 1	20 cycles (480 h)	l .	

Supplementary information: After measurement, the volume in the ammonia corrosion chamber is $10.924 \, \text{m}^3$, Set the gas flowmeter as $8 \, \text{L}$ / min and inject ammonia for 9.1 minutes. After calculation, the NH3 concentration in the ammonia corrosion chamber is $6667 \, \text{ppm}$.

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

3.4. Visual inspection after Ammonia corrosion test

Test procedure: reference to IEC 61215 second edition, dated 2005-04, clause10.1.

Humidity [%RH]	46.4	Ambient [°C]	25.3
Tested by	Fuqiang Jiao	Test Date [YYYY-MM-DD]	2024-07-12

	Nick and a siking of initial finalina	Critical
Sample No.	Nature and position of initial findings – comments or attach photos	[Yes or No]
1 (control)	No major finding	No
2	No major finding	No
3	No major finding	No

Results: The samples did not show any critical visual defect.

3.5. Maximum power determination after Ammonia corrosion test

Test procedure: reference to IEC 61215 second edition, dated 2005-04, clause 10.2.

Humidity [%RH]	46.9	Ambient [°C]	25.1
Tested by	Fuqiang Jiao	Test Date [YYYY-MM-DD]	2024-07-12

Table 9: Ma⊡in	num powerd	eterminatior	n after Amm	onia corrosio	n test			
□ight source] Simulator	[]	Natural sun	llight	
Sample No.	Voc [V]	Isc [A]	□ma□ [□]	Vmp [V]	Imp [A]	FF [%]	Tmod [°C]	Irradiance [□/m□]
1-F(control)	50.175	13.246	533.288	42.683	12.494	80.24	25.1	1000.04
1-R(control)	49.637	9.938	388.071	43.090	9.006	78.67	25.1	1000.01
3-□(control)	50.361	14.474	584.183	42.841	13.636	80.14	25.0	1000.02
2-F	50.168	13.191	533.926	42.686	12.508	80.68	25.1	1000.03

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

UL India Private Limited

Registered Office: Kalyani Platina - Block I, 3rd Floor

No. 24, EPIP Zone, Phase II, Whitefield, Bangalore - 560066, India

T: 91.80.4138.4400 / F: 91.80.2841.3759 / W: ul.com

CIN: U74200KA1997PTC023189

Page 14 of 25

2-R	49.613 9	.859 3	85.983 4	3.065	8.963	78.91	25.0	1000.01
2-B	50.347 1	4.453	585.184	42.817 1	3.667	80.42	25.0	1000.04
3-F	50.224 1	3.179	532.606	42.722 1	2.467	80.47	25.1 1	000.02
3-R	49.677 9	.970 3	86.371 4	3.126	8.959	78.01	25.0	1000.03
3-B	50.392 1	4.429	583.818	42.865 1	3.620	80.29	25.0	1000.02

Supplementary information: N/A

Results:

Degradation [%]	compared to initial t	est value			
Sample No.	Voc	Isc	Pmax V	mp I	mp
1-F (control)	0.00 -	0.05 -	0.06 0	.02	-0.08
2-F	0.21 -	0.59 -	0.33 0	.20	-0.53
3-F	0.21 -	0.57 -	0.33 0	.22	-0.54

Results: The IV curve did not show any kink or other unusual characteristic.

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

3.6. Dielectric withstand test after Ammonia corrosion test

Test procedure: reference to IEC 61215 second edition, dated 2005-04, clause 10.3.

Humidity [%RH]	54.2	Ambient [°C]	25.9
Tested by	Fuqiang Jiao	Test Date [YYYY-MM-DD]	2024-07-15

Test voltage applied [V DC]		1500	Test voltage applied	[V DC]	8000	
Sample No.	Measured Mod	Module area [m²]	Required		ctric breakd	own
•	resistance [MΩ]	MΩ] resistance [$MΩ$]	Yes [description] No		No	
1	>10000			No die	lectric break	down
2	>10000	2.58	15.50	No die	lectric break	down
3	>10000	_		No dielectric breakdow		down

Test voltage applied [V DC]		1500	Test voltage applied [V DC]		8000	
Sample No. Measured		Module area [m²]	Required	Dielectric breakdown		own
·	resistance [MΩ]		resistance [MΩ]	Yes [de	escription]	No
1 □contro⊡	□10000			No die	electric break	down
2	□10000	2.58	15.50	No dielectric breakdown		
3	□10000	1		No die	electric break	down

Results: For modules with an area greater than 0.1 m²:

There was no indication of dielectric breakdown during the test.

There-was no indication of surface tracking during the test.

The measured insulation resistance was not less than 15.50 megohms.

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

UL India Private Limited

Registered Office: Kalyani Platina - Block I, 3rd Floor

No. 24, EPIP Zone, Phase II, Whitefield, Bangalore - 560066, India

T: 91.80.4138.4400 / F: 91.80.2841.3759 / W: ul.com

CIN: U74200KA1997PTC023189

Page 16 of 25

3.7. Wet leakage current test Ammonia corrosion test

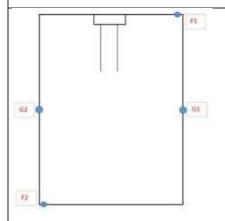
Test procedure: reference to IEC 61215 second edition, dated 2005-04, clause 10.15.

Humidity [%RH]	54.2	Ambient [°C]	25.9
Tested by	Fuqiang Jiao T	est Date [YYYY-MM-DD]	2024-07-15

Table 11: Wet leakage current test after Ammonia corrosion test						
Solution temperature [°C]		23.4	Solution resistivity [Ω cm]	2347		
Test Voltage applied [V, dc] 1500		1500				
Sample No.	Measured resistance [MΩ] M		l odule area [m²]	Required resistance [MΩ]		
1 (control)	2310		0.50.4	5.50		
2	1690		2.58 1	5.50		
3	1730					
Supplementary informa	tion: N	Supplementary information: N/A				

Results: For modules with an area greater than 0.1 m², the measured insulation resistance was not less than 15.50 megohms.

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1


3.8. Ground continuity test after Ammonia corrosion test

Test procedure: Reference to IEC61730-2 first edition, dated 2004-10, clause 10.4.

Humidity [%RH]	54.2	Ambient [°C]	25.9
Tested by	Fuqiang Jiao T	est Date [YYYY-MM-DD]	2024-07-15

Table 6: Ground continuity test	
Maximum over-current protection rating [A]	25
Current applied [A DC]	62.5

Location of designated grounding point and accessible point on conductive components of the PV module

G1, G2: Designated point for equipotential bonding

F1, F2: Conductive point of the PV module

Sample No.	Test point	Voltage dropped [V DC]	Resistance [Ω]
1	G1 to G2 0	.361 0	.0058
2	G1 to G2 0	.398 0	.0064
3	G1 to G2 0	.374 0	.0060

Supplementary information: The resistance were calculated from the applied current and the resulting voltage drop measured at the connection points of the PV module [e.g. frame].

Results: The resistance between the selected exposed conductive component and other conductive components of the PV module was less than 0.1Ω .

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

UL India Private Limited

Registered Office: Kalyani Platina - Block I, 3rd Floor

No. 24, EPIP Zone, Phase II, Whitefield, Bangalore - 560066, India

T: 91.80.4138.4400 / F: 91.80.2841.3759 / W: ul.com

CIN: U74200KA1997PTC023189

Page 18 of 25

3.9. Bypass diode functionality test after Ammonia corrosion test

Test procedure: Reference to IEC 61701 edition 2.0, dated 2011-12, clause 4.2

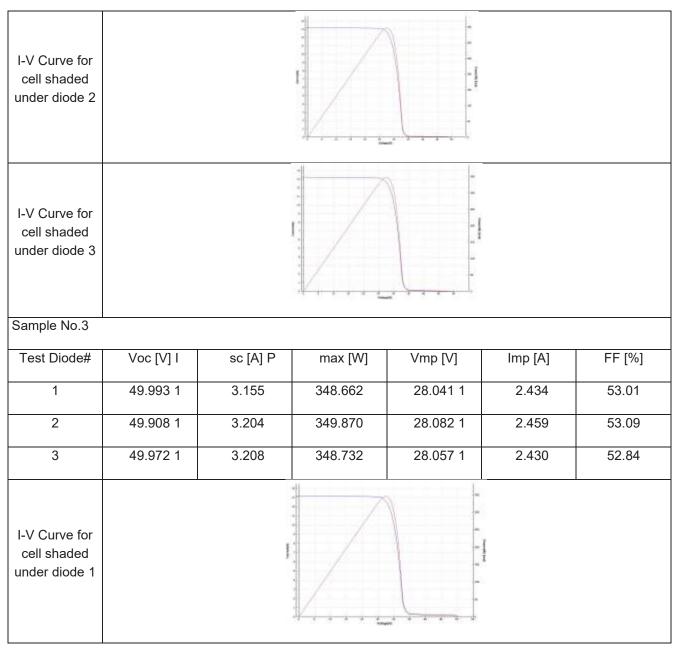
Humidity [%RH]	47.4	Ambient [°C]	25.0
Tested by	Fuqiang Jiao T	est Date [YYYY-MM-DD]	2024-07-16

Table 13: Bypas	ss diode function	ality test after A	Ammonia	corrosio	on test		
Sample No. 2			, 3				
Number of diode	es in junction box	(3					
STC short-circuit	it current [A]					13.90	
Current flow (1.2	25 * Isc) [A]			17.38			
Test duration (h	our) 1						
Diode functional	I2 Vee/Ne			Diode 1 Diode 2		Diode 3	
Diode fullctional	r res/NO			,	Yes	Yes	Yes
Diode function to	est (verify I-V cu	rve)					
Sample No.2							
Test Diode No.	Voc [V]	Isc [A] P	ma	x [W]	Vmp [V]	Imp [A] F	F [%]
1	49.941 1	3.184	350	.682	27.916	1 2.562	53.26
2	49.857 1	3.227	351	.158	27.944	1 2.567	53.25
3	49.915 1	3.228	351	.263	27.988	1 2.551	53.20
I-V Curve for cell shaded under diode 1			1	/ 		The second of th	

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

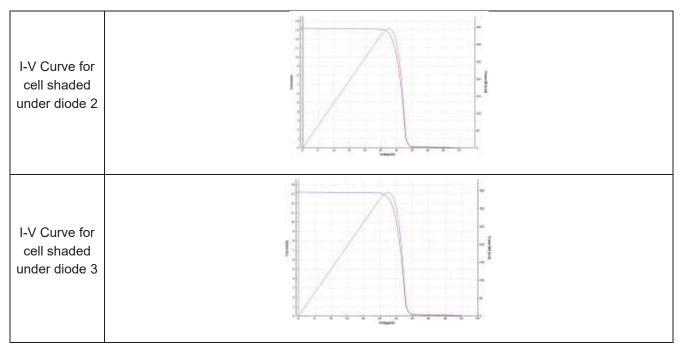
UL India Private Limited

Registered Office: Kalyani Platina - Block I, 3rd Floor


No. 24, EPIP Zone, Phase II, Whitefield, Bangalore - 560066, India

T: 91.80.4138.4400 / F: 91.80.2841.3759 / W: ul.com

CIN: U74200KA1997PTC023189


Page 19 of 25

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

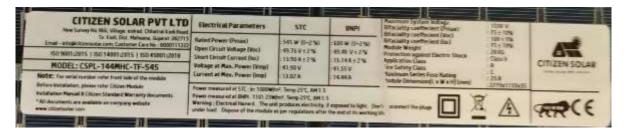
Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

Appendix1 - Product pictures

Module front view

Module rear view

Junction box


Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

Connectors

Appendix2 – Product nameplate label

Model-CSPL-144MHC-TF-545

Appendix3 - Statement of uncertainty

Expanded measurement uncertainty statement for Maximum power measurement:

Isc	Voc	Imp	Vmp	Pmp
2.3% 1	.0%	2.3% 1	.0%	2.4%

The expanded measurement uncertainty resulting from the standard measurement uncertainty multiplied with a factor k=2 is specified, denoting the deviations of the measurement value within a probability of 95%.

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

UL India Private Limited

Registered Office: Kalyani Platina - Block I, 3rd Floor

No. 24, EPIP Zone, Phase II, Whitefield, Bangalore - 560066, India

T: 91.80.4138.4400 / F: 91.80.2841.3759 / W: ul.com

CIN: U74200KA1997PTC023189

Page 23 of 25

Appendix 5

Bill of Material As declared by customer.

Module Model:	CSPL-144MHC-TF-545
Front Cover:	High transmission low iron tampered AR coated glass, Thickness 3.2
	mm, Textured, High Transmission (>94% for ARC),
	Manufacturer By: Borosil Renewables Ltd. India
Rear Cover	Manufacturer By: Renewsys India Pvt Ltd, Bangalore Model: PRESERV-1-300WD (For White) Total Thickness: 395 μm Model: PRESERV-1-300 TF (For Transparent) Total Thickness: 360 μm Model: PRESERV – 1 300 K2D (for black) Total Thickness: 360 μm
Encapsulation material:	Manufacturer By: Renewsys India Pvt Ltd, Bangalore
	Model No: Conserve P UVT 14FC (Front) 600GSM & Conserve P 360-14FC (Back) 550GSM
Frame:	Anodized Aluminium Alloy- 6063 -T6, 15 - 20 micron. Manufacturer By: Vinitech Metal Private Limited
Dimensions (I x w x h) [mm].:	2279mm x1133 mm x35 mm
Module area [m²]: 2	.58 [m²]
PV Cell: M	anufacturer By: United Renewable Energy Co. Ltd Mono-crystalline PERC Bifacial Solar half cut cell- M10, cell size /Format: 182 mm x 182 mm ± 0.5 mm, Thickness: 175 µm±17.5 µm
Cell- and string connectors: M	anufacturer By: Shanghai Sunby Solar Technology Co Ltd, China Tin coated copper wire Top & bottom 0.35*4mm, JB connector 0.35*6mm.
Junction box:	Manufacturer By: DhaSh PV Technologies Private Limited Bangalore. Model: DSJB12Y Type: Split Type Rated voltage: 1500 VDC, IP68, Class II, Application Class A, PD1, Flammability class: UL-94 V0, 5VA
Adhesive for frame:	Manufacturer By: Shanghai Huitian New Material Co Ltd Silicone s ealant M odel-HT906Z IN H AI = 0, H WI = 3 , Flame class HB75(WT)
Adhesive for junction box: M	anufacturer By: Shanghai Huitian New Material Co Ltd Silicone s ealant M odel-HT906Z IN H AI = 0, H WI = 3, Flame class HB75(WT)
Tape M	odel 7946, Manufacturer By: TESA TAPES INDIA PVT.LTD
Bypass diode:	Diode Type/ Number MK5045, Standard: IEC 62790:2020, 25A Max rated current Manufacturer By: Taizhou Chuangda Electronics Co. Ltd

******End of Report*****

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1

UL India Private Limited

Registered Office: Kalyani Platina - Block I, 3rd Floor

No. 24, EPIP Zone, Phase II, Whitefield, Bangalore - 560066, India
T: 91.80.4138.4400 / F: 91.80.2841.3759 / W: ul.com

CIN: U74200KA1997PTC023189

Page 24 of 25

Report Number:

Form-ULID-003263 (DCS:12-LO-F0852) Issue: 19.1